## Syntheses of a 6-(2-Pyrrolyl)-2,2'-bipyridine Derivative and Its Ruthenium Complex

## Toshi Nagata\* and Koji Tanaka

Institute for Molecular Science, Okazaki National Research Institute; CREST - Japan Science and Technology Corporation (JST); and Department of Structural Molecular Science, The Graduate University for Advanced Studies, Myodaiji, Okazaki 444-8585

(Received May 16, 2002)

Syntheses of a new planar terdentate ligand, 6-(3,5-diphenyl-2-pyrrolyl)-2,2'-bipyridine ( $L^1H$ ) and its ruthenium(II) complex ([Ru( $L^1$ )<sub>2</sub>]) are reported. The X-ray structure of [Ru( $L^1$ )<sub>2</sub>] showed the distorted octahedral Ru(II) center similar to the structures of terpyridine complexes. The cyclic voltammograms revealed that [Ru( $L^1$ )<sub>2</sub>] was more easily oxidized than [Ru(terpy)<sub>2</sub>]<sup>2+</sup> by 1.10 V.

Metal complexes of pyrroles<sup>1</sup> are gathering interest as an activator of the pyrrole ring,<sup>2</sup> an intermediate for synthesizing pyrrole derivatives,<sup>3</sup> and as a component of conducting polymers.<sup>4</sup> On the other hand, considering the rich chemistry of polypyridine metal complexes, one can easily replace one or two pyridine rings in polypyridines with pyrrole rings to develop a different series of useful ligands.<sup>5,6</sup>

In this article we report the syntheses of 6-(3,5-diphenyl-2-pyrrolyl)-2,2'-bipyridine ( $L^1H$ ) and its ruthenium complex [Ru( $L^1$ )<sub>2</sub>]. The compound  $L^1H$  is the first example of the "teraryl" ligand that has one pyrrole and two pyridine rings in this order, 9 and it will be a useful substitute for 2,2':6',2''-terpyridine (terpy) when more electron-donating character is desirable.

The synthesis of L<sup>1</sup>H is shown in Scheme 1. The Stetter condensation<sup>7</sup> of 2,2'-bipyridine-6-carbaldehyde<sup>8</sup> with chalcone was utilized, followed by ring closure of the 1,4-diketone with an ammonium salt (67% yield). By use of pyridine-2,6-dicarbaldehyde as a starting material, the compound L<sup>2</sup>H<sub>2</sub>, 2,6-bis(3,5-diphenyl-2-pyrrolyl)pyridine, was also obtained (69%

Scheme 1. Synthesis of the ligand L<sup>1</sup>H.

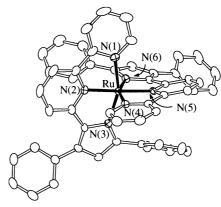



Fig. 1. ORTEP view (50% probability ellipsoids) of the complex [Ru(L¹)₂]. Selected bond lengths (Å): Ru–N(1), 2.052(3); Ru–N(2), 1.989(3); Ru–N(3), 2.076(3); Ru–N(4), 2.052(3); Ru–N(5), 1.994(3); Ru–N(6), 2.121(3). Selected bond angles (°): N(1)–Ru–N(2), 79.2(1); N(2)–Ru–N(3), 78.7(1); N(4)–Ru–N(5), 79.2(1); N(5)–Ru–N(6), 78.6(1), N(1)–Ru–N(4), 93.5(1); N(1)–Ru–N(6), 90.5(1); N(3)–Ru–N(4), 91.7(1); N(3)–Ru–N(6), 93.0(1).

yield).

The ORTEP drawing of the complex  $[Ru(L^1)_2]$  is shown in Fig. 1. The coordination geometry around the Ru(II) center is similar to that of  $[Ru(terpy)_2]X_2$ . However, the six pyridine/pyrrole rings are not exactly coplanar; the dihedral angles between the neighboring rings are  $8.5-19.4^{\circ}$ .

The  $^1$ H NMR spectrum of  $[Ru(L^1)_2]$  in  $(CD_3)_2$ SO revealed all signals in the diamagnetic region (5.7–8.5 ppm), which is consistent with the formulation of Ru(II) and two monoanionic ligands. The ESI (electrospray ionization) mass spectrum in acetone showed a cluster of peaks around m/z = 846 which matched the calculated isotopic pattern for  $[Ru(L^1)_2]^+$ ; this apparently contradictory presence of Ru(III) species is attributed either to aerial oxidation of the sample solution or to a redox process inside the ionization chamber of the ESI-MS.

The cyclic voltammograms of  $[Ru(L^1)_2]$  and  $[Ru(terpy)_2]$ - $(ClO_4)_2$  are shown in Fig. 2. The Ru(III)/Ru(II) couple appeared at -0.29 V (versus ferrocene/ferrocenium couple) in  $[Ru(L^1)_2]$ , which was 1.10 V more negative than in  $[Ru(terpy)_2](ClO_4)$ , consistent with the strong donor character of the  $L^1$  ligand. The first reduction wave (reduction of the ligand) was also negatively shifted by 0.51 V. At higher potential range (+0.5-0.7 V),  $[Ru(L^1)_2]$  showed irreversible waves suggesting the oxidative degradation of the complex. Apparently the oxidation of the pyrrole rings led to the degradation of the ligand and/or the decomplexation of the metal ion. Introduction of a substituent such as alkyl or aryl to the 3-position of the pyrrole ring may increase the stability under oxidative conditions; this will be our next project for improving this type of ligand.

## **Experimental**

**General.** All reagents and solvents were of commercial reagent grade and were used without further purification. Elemental analyses were performed on a Yanaco MT-3 analyzer. <sup>1</sup>H NMR spectra were measured on a JEOL Lambda-500 (500 MHz) spec-

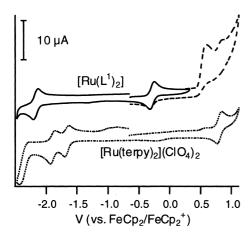



Fig. 2. The cyclic voltammograms of  $[Ru(L^1)_2]$  and  $[Ru(terpy)_2](CIO_4)_2$ ; glassy carbon electrode (0.3 mm diameter),  $5.0 \times 10^{-3}$  mol dm<sup>-3</sup> solutions in DMF with 0.1 mol dm<sup>-3</sup> Et<sub>4</sub>NClO<sub>4</sub>.

trometer and chemical shifts are reported in the  $\delta$  scale relative to Me<sub>4</sub>Si in ppm. Cyclic voltammetry was performed with an ALS Model 660 electrochemical analyzer. Mass spectra were obtained either on a JEOL JMS-GCMate-II spectrometer (for FAB) or on a Shimadzu LCMS-2010 spectrometer (for ESI).

6-(3,5-Diphenyl-2-pyrrolyl)-2,2'-bipyridine (L<sup>1</sup>H). 2,2'-Bipyridine-6-carboxaldehyde (368 mg, 2.0 mmol), 1,3-diphenyl-2propene-1-one (chalcone, 416 mg, 2.0 mmol), and 3-benzyl-5-(2hydroxyethyl)-4-methylthiazolium chloride (54 mg, 0.2 mmol) were mixed in a 30-mL flask. Ethanol (5 mL) was added, followed by a solution of sodium t-butoxide (19 mg, 0.2 mmol) in ethanol (2 mL). The flask was heated under argon stream to 90 °C for 20 h. The pale brown mixture was poured into water and extracted with CHCl3. The extract was washed with water, dried over Na<sub>2</sub>SO<sub>4</sub>, and evaporated. The resulting orange-red oil (6-(1,4-dioxo-2,4-diphenylbutyl)-2,2'-bipyridine) was mixed with ammonium acetate (0.77 g, 10 mmol) in ethanol (5 mL), and the mixture was heated under argon to 90 °C for 42 h. Water (15 mL) was added, and the mixture was extracted with CHCl<sub>3</sub>, washed with water, dried over Na<sub>2</sub>SO<sub>4</sub>, and evaporated. The residue was purified by medium-pressure column chromatography (Wakogel C-200,  $20 \times 150$  mm,  $CH_2Cl_2$ , then  $CH_2Cl_2/MeOH = 100/2$ (v/v)). The vellow main fraction was collected and evaporated. Yellow amorphous solid, yield 504 mg (1.35 mmol, 67%). Mp 76–80 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  pyrrole, 9.93 (1H, br), 6.61 (1H, d); pyridine, 8.69 (1H, dd), 8.45 (1H, d), 8.10 (1H, d), 7.88 (1H, td), 7.53 (1H, t), 7.35 (1H, d), 7.28 (1H, d); phenyl, 7.64 (2H, d), 7.52 (2H, d), 7.43 (2H, t), 7.41 (2H, t), 7.32 (1H, t), 7.27 (1H, t). HRMS (FAB, glycerol). Found: m/z 374.1507. Calcd for  $C_{26}H_{20}N_3 (M + H^+)$ : m/z 374.1657.

**2,6-Bis(3,5-diphenyl-2-pyrrolyl)pyridine** ( $L^2H_2$ ). The ligand  $L^2H_2$  was prepared from 2,6-pyridinedicarboxaldehyde using a similar method to that for  $L^1H$ . Pale yellow powder, yield 705 mg (1.37 mmol, 69%). Mp ( $CH_2Cl_2/EtOH$ ) 221–223 °C.  $^1H$  NMR ( $CDCl_3$ )  $\delta$  pyrrole, 9.54 (2H, br), 6.64 (2H, d); pyridine, 7.19 (1H, t), 7.01 (2H, d); phenyl, 7.58 (4H, d), 7.50 (4H, d), 7.41 (4H, t), 7.38 (4H, t), 7.29 (2H, t), 7.27 (2H, t). Anal. Found: C, 86.29; H, 5.31; N, 8.01%. Calcd for  $C_{37}H_{27}N_3$ : C, 86.52; H, 5.30; N, 8.18%.

[Ru(L¹)<sub>2</sub>]. The ligand L¹H (55.2 mg, 148 μmol), RuCl<sub>3</sub>·xH<sub>2</sub>O (19.4 mg, 74 μmol) and triethylamine (29.7 mg, 296 μmol) were mixed with EtOH (3.5 mL), and the mixture was heated to 100 °C with vigorous stirring for 17 h. After the mixture was cooled to room temperature, the deep-green precipitate was collected by filtration and washed with EtOH. Yield 49.4 mg (58.4 μmol, 79%). Mp (CH<sub>2</sub>Cl<sub>2</sub>/EtOH) > 300 °C. ¹H NMR ((CD<sub>3</sub>)<sub>2</sub>SO) δ 8.21 (1H, d), 7.80 (1H, br), 7.46 (7H, m), 7.28 (1H, t), 7.11 (1H, br), 6.88 (1H, br), 6.28 (3H, m), 6.70 (2H, d), 5.70 (1H, br). ESI-MS (in acetone) m/z 846 (M⁺). Anal. Found: C, 73.28; H, 4.32; N, 9.82%. Calcd for C<sub>53</sub>H<sub>39</sub>N<sub>6</sub>O<sub>0.5</sub>Ru ([Ru(L¹)<sub>2</sub>]·1/2EtOH): C, 73.25; H, 4.52; N, 9.67%. Single crystals for X-ray studies were obtained by slow evaporation of the CH<sub>2</sub>Cl<sub>2</sub>/hexane solution.

**X-ray Structure Determination.** Cell constants and intensity data were collected at 193 K on a Rigaku Mercury diffractometer equipped with a Mo sealed tube operating at 50 kV 25 mA, a graphite monochromator, and a CCD detector. The data were collected to a maximum  $2\theta$  value of 55.0°. The structure were solved by direct methods<sup>10</sup> and refined on F by full-matrix least-squares techniques. All calculations were performed by the Crystal-Structure<sup>11</sup> software package. Selected crystallographic parameters are as follows:  $C_{52}H_{36}N_6Ru$ , Fw 845.97, monoclinic,  $P2_1/n$ , a = 9.444(3) Å, b = 28.143(8) Å, c = 15.297(5) Å,  $\beta = 110.082(3)^\circ$ , V = 3818(1) Å<sup>3</sup>, Z = 4,  $D_{calc} = 1.472$  g cm<sup>-3</sup>, R = 6.6%,  $R_w = 9.1\%$ .

The authors thank Dr. Tsukasa Matsuo for assistance in X-ray structure determination, Mr. Tetsunori Mizukawa for FAB-MS measurements, and Mr. Seiji Makita for elemental analyses

## References

- 1 C. Janiak and N. Kuhn, *Adv. Nitrogen Heterocycl.*, **2**, 179 (1996).
  - 2 D. M. Rakowski, Coord. Chem. Rev., 174, 191 (1998).
- 3 H. Seino, Y. Ishii, and M. Hidai, *J. Am. Chem. Soc.*, **116**, 7433 (1994).
- 4 T. W. Hanks, M. Mathis, and W. Harsha, Book of Abstracts, 213th ACS National Meeting, San Francisco, April 13–17 (1997).
- 5 R. A. Jones, M. Karatza, T. N. Voro, P. U. Civcir, A. Franck, O. Ozturk, J. P. Seaman, A. P. Whitmore, and D. J. Williamson, *Tetrahedron*, **52**, 8707 (1996).
- 6 F. Wu, C. M. Chamchoumis, and R. P. Thummel, *Inorg. Chem.*, **39**, 584 (2000).
  - 7 H. Stetter, Angew. Chem., Int. Ed. Engl., 15, 639 (1976).
- 8 T. Norrby, A. Boerje, L. Zhang, and B. Åkermark, *Acta Chem. Scand.*, **52**, 77 (1998).
- 9 a) S. Pyo, E. Pérez-Cordero, S. G. Bott, and L. Echegoyen, *Inorg. Chem.*, **38**, 3337 (1999). b) K. Lashgari, M. Kritikos, R. Norrestam, and T. Norrby, *Acta Crystallogr*, C**55**, 64 (1999). c) D. C. Craig, M. L. Scudder, W.-A. McHale, and H. A. Goodwin, *Aust. J. Chem.*, **51**, 1131 (1998).
- 10 "SIR92:" A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. Burla, G. Polidori, M. Camalli, *J. Appl. Crystallogr*, **27**, 435 (1994).
- 11 "CrystalStructure 1.02: Crystal Structure Analysis Package," Rigaku and Molecular Structure Corporation (2001).